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Disclaimer

The information provided in this document is subject to peer-evaluation and may not be used,
published or redistributed without the prior written consent of all authors listed above.

Aim

This report provides predictions from different models describing the spread of SARS-CoV-2 (COVID-
19) in Belgium. The presented scenarios coming from these models reflect structural (model) un-
certainty on top of uncertainty in factors influencing the spread of the disease. However, the added
value of combining different models is validation of their projections over the course of time.

UHasselt stochastic compartmental model

Model structure and limitations

We use a stochastic discrete age-structured compartmental model (Abrams et al., 2020) calibrated
on high-level hospitalisation data (Sciensano), serial serological survey data (Herzog et al., 2020)
and Belgian mortality data (Sciensano). More specifically, the stochastic model predicts (stochastic
realisations of) the daily number of new hospitalisations per age group (i.e., 10 year age groups).
The modeling approach depends on assumptions with regard to the transmission process which
inevitably implies an underestimation of the level of uncertainty. As the model-based long-term
predictions rely on changes in social contact behaviour following the exit strategy initiated May 4,
2020, we present such predictions under various scenarios which aim at giving some insights in the
future course of the epidemic without being able to assign a probability to each scenario related
to the likelihood of a given scenario to become reality. We do account for the current resurgence
of COVID-19 in the selection and presentation of plausible scenarios. As more data will become
available in the next weeks, further model validation and updated prediction results are needed.
Model results should be interpreted with great caution.

Some limitations of the model are listed below:

• The different scenarios are expressed in terms of changes in social contact behaviour, as a
proxy for changes in transmissibility as a result of social distancing and hygienic measures
taken at different locations, e.g., at work and school

• In the stochastic model we are not explicitly accounting for re-importation of the pathogen in
the population

• All scenarios are hypothetical and we are not able to discern the more plausible scenario given
the unpredictive nature of adjusted social behavior and future measures.

• We did not include seasonality in the model

• Contact tracing, testing and self-isolation are not incorporated in the exit strategies nor sub-
sequent waves outlined in this report

• Although a gradual re-opening of society and relaxing of the lockdown measures is done in
different phases, we assume a specified change in social contact behaviour from May 4 onwards
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Schematic diagram (UHasselt)
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Figure 1: Schematic overview of the flows of individuals in the compartmental model: Following
SARS-CoV-2/COVID-19 infection susceptible individuals (S) move to an exposed state (E) and
after a latent period individuals further progress to a pre-symptomatic state (Ipresym) in which
they can infect others. Consequently, individuals stay either completely symptom-free (Iasym) or
develop mild symptoms (Imild). Asymptomatic individuals will recover over time. Upon having
mild symptoms, persons either recover (R) or require hospitalization (going from Isev to Ihosp or
Iicu) prior to recovery (R) or death (D).

Long-term predictions under different scenarios

In Figure 2, we graphically depict the predicted daily number of new hospitalizations accounting
for a reduction in school-related contacts upon the Christmas Holiday and spring half-term. More
specifically, scenario S1 (blue lines) represents the scenario under the current social contact be-
haviour. It is observed that this implies a substantial incidence of new hospitalizations. Scenario
S2 (purple lines) assumes a 10% reduction in work- and transport-related contacts and a similar
reduction in leisure contacts until the Christmas holidays. Finally, scenario S3 (orange lines) im-
plies a 20% reduction in the aforementioned contacts. Note that in all scenarios, contact behaviour
following the Christmas period is presumed to be similar to the current social contact behaviour,
thereby implying a small to moderate resurgence in scenarios S2 and S3, respectively.

In order to show the complete extent of the number of hospitalisations as of October 1, 2020, we
present the cumulative number of hospitalisations for scenarios S1-3 and accommodating a closure
of schools during the Christmas and spring holidays (see Figure 3). The cumulative number of
hospitalisations by the end of the March are very different across the different scenarios due to the
difference in rate of increase of the number of daily hospitalizations over time.

The hospital load is graphically depicted in Figure 4, assuming a Weibull distribution for the time
spent in the hospital (scale = 10.46, shape = 1.34) (Faes et al., 2020), which implies an average
duration of hospitalisation of about 9.6 days. Furthermore, the ICU load is displayed therein as
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S1: Current contact behaviour
S2: 10% reduction in current contact behaviour
S3: 20% reduction in current contact behaviour

Figure 2: Long-term prediction of the number of new hospitalisations.

well relying on 25% of the hospitalisations becoming Intensive Care Unit (ICU) admissions. Limits
on the number of available ICU beds for COVID-19 patients are indicated with red dashed lines.
In general, scenarios S2 and S3 do not exceed the upper limit on COVID-19 beds (i.e., 2000 ICU
beds), whereas scenario S1 does.
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Figure 3: The cumulative number of hospitalisations.
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Figure 4: The time-dependent number of hospitalisations in the three scenarios under the assump-
tion of a Weibull distribution for the time spent in the hospital (scale = 10.46, shape = 1.34). Red
dashed lines indicate limits on the number of available ICU beds for COVID-19 patients (1000:
normal COVID ICU capacity, and 2000 ICU beds: increased COVID ICU capacity).
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UNamur deterministic compartmental model

Model structure and limitations

The model initially developed at UNamur is a continuous age-structured compartmental model
based on differential equations calibrated on public Sciensano data on hospitalisation, mortality
and serology from blood donors. Transmission between age classes is computed using social contact
data at different places (home, work and transport, school, leisure and others). The model has 65
estimated parameters with probability distribution given by an MCMC method. Nursing homes are
considered in a specific way as 2000 isolated entities with random infection and variable hospitalisa-
tion policy depending on hospital load. Continuous care improvement from the first wave is taken in
consideration. The model specifically accounts for the under-reporting in new hospitalisations due
to transfers of patients from a non-COVID unit, hence, all figures and data concerning this
model already include an additional incidence estimated at 15.7% with 90% confidence
interval [9.6%,24.1%]. The recent update of the model takes also potential re-importations dur-
ing the holidays season into account. Technical details can be found in Franco (2020).

The model does not take into account the spatial structure on the population as well as gradual
compliance, seasonality or cross-immunity effects. Contact tracing, testing and self-isolation are not
specifically incorporated in the model, except for the aggregated effect on reducing the number of
high-risk contacts.
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Schematic diagram (Unamur model)
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Figure 5: Schematic view of the UNamur compartmental model
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Long-term predictions under different scenarios

The different scenarios are expressed in terms of changes in social contact behaviour, as proxy for
changes in transmissibility as a result of social distancing and hygienic measures taken at different
locations. The current estimations by the model for the month of September are (% of pre-pandemic
contacts):

• Home/family contacts: 50.5% [46.5%,54.1%]

• Work contacts (+ transport): 9.2% [5.8,12.9%]

• Leisure contacts (+ others): 30.6% [21.9%,38.2%]

• School contacts: 69.7% [44.2%,88.6%]

Note that those percentages are applied to both asymptomatic and symptomatic classes, without
considering any self-isolation from symptomatic people. Hence their estimated absolute values might
differ from the UHasselt stochastic model but proportional variations over the different periods and
scenarios are similar.

Due to the recent introduction of school contacts and the particularly long delay before the impact
on hospitalisations data coming from infectious inside a young class, school contacts are still cur-
rently estimated by the model with a large confidence interval, which is one of the main source of
uncertainties for the different scenario-based forecasts.

We present two different scenarios which are explained below, in terms of hospital admissions per day
(Figure 6), cumulative numbers (Figure 7) and hospital load (Figure 8). Figures are represented by
the median and all 5% percentiles. Those scenarios are assumed without upcoming major change in
governmental measures, hence, these scenarios only represent projections from a constant situation
and any major change in measures, behaviour or additional effect would result in a deviation from
the forecast.

Scenarios with current behaviour

The red line scenario is under the assumption that the current social contact behaviour from people
remains constant over time, hence with the previously described percentages. The calibration takes
account of an estimated amount of re-importation coming from travellers during the period July-
September from the following countries: France, Spain, Italy and The Netherlands and according to
the 2019 Belgian travel trends given by ABTO and the evolution of the epidemic in those countries
given by ECDC. The estimation of 30.6% of leisure contacts is an average over the period September
1-27, which is assumed different from the previous period (August) due to a clear change in the evo-
lution of the epidemic which cannot be completely explained by schools opening and re-importations.

Due to the combined effect of re-importations and social contacts in September, the forecast is a bit
more optimistic than the ones in the stochastic model since re-importations from holiday travellers
are assumed nonexistent starting from October. Nevertheless, the projection still implies a full load
or overload of Belgian hospital capacities.

Scenarios with less leisure and other contacts

The blue line scenario is under the assumption that leisure social contacts are 20.6% [11.9%,28.2%]
of the pre-pandemic observations starting on October, 1. This is absolute reduction of −10% in
comparison to September. Such a reduction is a realistic scenario since it can come either (or both)
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from the effect of new measures locally taken (as e.g. the recent new measures in Brussels) and/or
from a self-evolution in the population behaviour. This scenario still implies a large load of hospital
capacities which might be similar to the first wave but over a longer period. We must note that the
decrease of this potential second wave is due to the natural increase of immunity rather than from
lockdown measures.

In order to reach a scenario without any real second wave, we should have leisure contacts at a
similar level than June’s situation, which is estimated at 13.5% from this model. We can also
remark that the variation in leisure contacts is the most important factor in the evolution of the
epidemic, since according to those scenarios a −10% change in leisure contacts as an effect almost
similar to a −25% change in school contacts.

Figure 6: UNamur model: Incidence in new hospitalizations. The model estimates an amount
of transfers from other pathologies as an additional 15.7% [9.6%,24.1%] which are included in the
forecasts and real data. An estimation of re-importations from travellers is taken into consideration.
Data are considered up to September, 27.
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Figure 7: UNamur model: Cumulative numbers of new hospitalizations since October 1st. The
model estimates an amount of transfers from other pathologies as an additional 15.7% [9.6%,24.1%]
(within hospital referrals) which are included in the forecasts and observed data. An estimation of
re-importations from travellers is taken into consideration. Data are considered up to September,
27.

Figure 8: UNamur model: Hospital load (prevalence). The model is calibrated both on hospi-
talizations and deaths, with an estimation of care improvement over time. An estimation of re-
importations from travellers is taken into consideration. Data are considered up to September, 27.
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VUB time-series model

This analysis applies a time series approach wherein the log-number of events log(Xt) (with Xt

the number of events of interest) is assumed to follow a first order auto-regressive process with
a piecewise linear drift driven by a Gaussian cyclo-stationary process. The cyclo-stationarity is
a priori set to a weekly periodicity to account for the weekend effect. The model choice is de-
rived from a linearisation of the standard SEIR-model equations. The analysis uses the publicly
available national data daily distributed by Sciensano. Forecasts are obtained by transforming
the time series parameters to the parameters of the SEIR model equations proceeded by solving
the SEIR differential equations numerically through a standard Runge-Kutta 4/5 numerical scheme.

The model is data-driven which serves as a prediction model with limited possibility of scenario sim-
ulations. The uncertainty analysis relies on the assumed Gaussian cyclo-stationary noise process.
The weekend-effect is modelled non-parametrically by analysis of the periodogram of the model
residuals w.r.t log(Xt). The Fourier coefficient corresponding to a weekly periodicity is used in the
residual’s spectral density.

Forecasts are based on two estimators: maximum likelihood estimator and the prediction error
estimator (see Figure 9. In the first estimator the residual error is minimized between model output
and observed data which is denoted as the maximum likelihood estimator. The second estimator
minimizes the multi-step ahead prediction error based on a time window since 18/9 denoted by the
prediction error estimator. The peak moment is expected around November 13th which is based
on the ML-estimate estimated on 4333 occupied beds while this is 2552 beds accordingly to the
PE-estimate. The uncertainty interval on the peak-value is large as given by [2424, 6656] due to the
prediction uncertainty. The prediction error estimate is identified as the current solution path that
the pandemic is following based on the past validation window since 18/9. This gives an assessment
w.r.t. the confidence interval where the projection is currently positioned compared to the maximum
likelihood estimator estimated on 18/9 which is approximately centered in the confidence interval.
Thus, the prediction error estimated considers the current situation slightly more optimistic than
what was anticipated on 18/9.
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Figure 9: Projection VUB model based on the time series up to 18/9 (red) and validated on the
time series since 18/9 up to 29/9 (black): Observations up to 18/9 (blue crosses), Observations
since 18/9 (black crosses), maximum likelihood estimation (dashed red), Prediction error estimate
(dashed black), confidence area (shaded red), model fit up to 18/9 (full red).
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Conclusions

On October 1st, the observed daily number of hospitalizations comply with the most pessimistic
scenarios, with a hospital load peak around the end of the year. The information regarding the
increasing number of confirmed cases could imply a change in contact behaviour in the Belgian
population, thereby lowering the incidence of new hospitalizations in the near future. We present
scenarios that account for a reduction in social contacts (as proxy for transmission) (S2 and S3,
UHasselt model) and (S2, UNamur model). Given the unpredictive nature of adaptive social con-
tact patterns in pandemic times and measures taken, we can only report ranges through scenario
analysis without identifying a most-likely situation. The evolution of the number of hospitalizations
in the next days and weeks will show which of these scenarios will unfold.

The combination of individual decision making and appropriate measures are still key
in the reduction of COVID-19 hospital admissions to realise one of the more optimistic
scenarios.
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