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Fred Vermolen5, Nicolas Franco6, Sébastien Clesse7, Lander Willem8, Christel Faes1,

Geert Molenberghs1,9, Niel Hens 1,8

1 Data Science Institute, I-BioStat, UHasselt, Hasselt, Belgium

2 Global Health Institute, Department of Epidemiology and Social Medicine,

University of Antwerp, Antwerp, Belgium

3 KERMIT, Department of Data Analysis and Mathematical Modelling,

University of Ghent, Ghent, Belgium

4 BIOMATH, Department of Data Analysis and Mathematical Modelling,

University of Ghent, Ghent, Belgium

5 Computational Mathematics (CMAT), UHasselt, Hasselt, Belgium

6 Namur Institute for Complex Systems, University of Namur, Namur, Belgium

7 Service de Physique Théorique,
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Disclaimer

The information provided in this document is subject to peer-evaluation and may not be used,
published or redistributed without the prior written consent of all authors listed above.

Introduction: four predictive models

This report contains predictions from four different models describing the spread of SARS-CoV-2
(COVID-19) in Belgium. Each models accounts for uncertainty related to factors influencing the
disease spread, but by presenting different model outcomes we can also account for structural model
uncertainty. This standard practise when it comes to model-based decision support, e.g. the IPCC
considers the outcomes of more than 10 different models for supporting its reports. Moreover, by
combining different models we can mutually validate their projections over the course of time. As
more data will become available in the next weeks, further model validation and updated predic-
tion results will follow. In general, model predictions should be interpreted with great caution and
awareness of the underlying assumptions.

Three of the used models (UHasselt, UGent and UNamur) are compartmental models, which cap-
ture the dynamics of the epidemic by dividing the population into different compartments: in its
most basic form susceptible, infected, recovered and deceased people. The models differ in the
way the compartments are further subdivided to capture the details of the disease dynamics, and
hence in the number of parameters to be calibrated and the data used for calibration. The flow
between the different compartments is governed by equations based on the known mechanics of
disease spread, therefore these models are also called mechanistic models. They can be used to do
predictions under different scenarios, by changing the flow of individuals between compartments
based on assumptions on how the disease transmission changes under these scenarios.

The fourth model (VUB) is a data-driven time-varying time-series model: it models the disease
spread directly from the data by estimating the parameters in a time series model whose dynamics
are similar to what can be expected in a compartmental model. The model is therefore a gray box
model which is based on the working principles of compartmental models. The different parameters
are calibrated by the measured data up to one week in the past and validated on the most recent
data (last week). This model is useful to predict the effect of a continuation of the current situation,
but cannot be used to predict different scenarios (for instance a change in contacts or behaviour).
Hence, we will only present the three compartmental models for the scenarios that deviate from the
current situation.

Some limitations of the four models used in this report are listed below:

• The different scenarios are expressed in terms of changes in social contact behaviour, as a proxy
for changes in transmissibility which result from social distancing and hygienic measures taken
at different locations, e.g., at work and at school.

• All scenarios are hypothetical and we are not able to discern the more plausible scenario given
the unpredictable nature of adjusted social behaviour and future measures.

• The models do not take into account the spatial structure of the population.

• We did not account for seasonality or cross-immunity effects.
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• Contact tracing, testing and self-isolation are not incorporated, except for the aggregated
effect on reducing the number of high-risk contacts.

More details on the specific properties, assumptions and limitations of each model can be found in
the Appendix.

Below, we present predictions for the following scenarios:

Scenario 1 Continuation of the contact behaviour as before 19 October. This is the worst-case
scenario: what would happen if people do not comply to the measures that took effect on 19
October.

Scenario 2 Implementation of the measures that started on 19 October for only 4 weeks. These
comprise closing of bars and restaurants, limitation of contacts and code orange at schools,
implying a general reduction of contacts during 4 weeks.

Scenario 3 Implementation of the measures that started on 19 October for 6 months.

Scenario 4 Contact behaviour and hence transmission reduction at the level of the March-April
2020 lockdown (with the exception of schools remaining open outside the holidays).

For all scenarios, we implemented complete school closures during the holidays periods of the (ex-
tended) autumn (2 – 11 November), Christmas (21 December – 3 January) and spring (15 – 21
February).

Number of new hospitalizations

All models predict that if contact behaviour is not changed with respect to the level preceding 19
October (Scenario 1), a peak in hospitalizations will be reached between November and mid-way
December, whose maximum might be up to 3 times higher than the one of the first wave in March
2020 (Figure 1). If contact behaviour is reduced during only one month (Scenario 2), the peak
number of hospitalizations is predicted to be lower but spread over a longer period than under
Scenario 1. A continuation of the reduced contact behaviour for six months (Scenario 3), as well as
an even more stringent transmission reduction similar to the March-April 2020 lockdown (Scenario
4) both lead to a lower peak number of hospitalizations.
Anyhow, even in the best-case scenario, all models indicate that it is unlikely that we will not
surpass the peak number of hospitalizations during the first wave.

Hospital load

If contact behaviour is not changed with respect to the level before 19 October (Scenario 1), all
models predict that the increased maximal ICU-load of 2000 beds will be exceeded in the first half
of November (Figure 2). In case of a reduced contact behaviour during one month (Scenario 2), this
overshoot will be lower and spread over a longer period, but remains very likely. The probability
of exceeding the maximal load decreases in case of continued contact reduction (Scenario 3) and a
more stringent transmission reduction (Scenario 4). Regardless of the scenario, all models predict
that the normal ICU-load of 1000 beds will be most likely exceeded.
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Figure 1: Long-term prediction of the number of new hospitalizations for the different scenarios and
models: mean value with 95% prediction interval.
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Figure 2: Long-term predictions of the hospital load: mean value with 95% prediction interval.
The dashed lines indicate the number of available ICU beds for COVID-19 patients (1000: normal
capacity and 2000: increased capacity). The VUB-model is only used for predictions in Scenario 1:
a continuation of the situation as indicated by the currently available data. Note that it takes some
time before changes in contact behaviour are manifested in the data.
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Conclusions

The consideration of different models for generating long-term predictions allows to capture model
uncertainty, related to different model types, properties, assumptions and structures. However,
despite the discrepancy between the assumptions underlying the four models, their predictions are
consistent in the sense that they indicate the same trends. Moreover, also the predicted numbers
are very much in line with each other, especially taking into consideration the difficulty of pre-
dicting an inherently uncertain future. We cannot but emphasize the importance of taking the
provided uncertainty into account when making statements about the further epidemic progression,
preparing for what is still to come and taking decisions that have a societal impact. Moreover, one
always should keep in mind the assumptions and limitations intrinsic to all models: it are always
simplifications of reality. Finally, the model predictions are only valid under the given scenarios and
the unpredictability of human behaviour adds up to the general uncertainty. The latter source of
uncertainty is, for instance, not present in weather models, and those already present considerable
uncertainty in their predictions.
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Table 1: Main properties, assumptions and limitations of each model. The complete model descrip-
tions can be found below.

UHasselt UGent

model type stochastic deterministic

compartmental compartmental

properties age-structured age-structured

discrete-time continuous-time

no re-importations no re-importations

mechanistic mechanistic

assumptions asymptomatic individuals 50% less infectious children 50 % susceptible

deaths in hospitals only deaths in hospitals only

age-dependent probability of being mildly infected self-quarantine

asymptomatic & developing severe symptoms

UNamur VUB

model type deterministic deterministic

compartmental time-series

properties age-structured non-age-structured

continuous-time discrete-time

re-importations from travellers no re-importations

mechanistic grey box

assumptions estimated infectiousness per severity homogeneous hospitalization probability

separated deaths from nursing homes and hospital homogeneous population

age-dependent probability of being death in hospitals only

asymptomatic & developing severe symptoms
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UHasselt stochastic compartmental model

We use a stochastic discrete age-structured compartmental model (Abrams et al., 2020) calibrated
on high-level hospitalization data (Sciensano), serial serological survey data (Herzog et al., 2020)
and Belgian mortality data (Sciensano). More specifically, the stochastic model predicts (stochastic
realisations of) the daily number of new hospitalizations per age group (i.e., 10 year age groups).
The modeling approach depends on assumptions with regard to the transmission process which
inevitably implies an underestimation of the level of uncertainty. As the model-based long-term
predictions rely on changes in social contact behaviour following the exit strategy initiated May 4,
2020, we present such predictions under various scenarios which aim at giving some insights in the
future course of the epidemic without being able to assign a probability to each scenario related
to the likelihood of a given scenario to become reality. We do account for the current resurgence
of COVID-19 in the selection and presentation of plausible scenarios. In this model we are not
explicitly accounting for re-importation of the pathogen in the population
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Figure 3: Schematic overview of the flows of individuals in the compartmental model: Following
SARS-CoV-2/COVID-19 infection susceptible individuals (S) move to an exposed state (E) and
after a latent period individuals further progress to a pre-symptomatic state (Ipresym) in which
they can infect others. Consequently, individuals stay either completely symptom-free (Iasym) or
develop mild symptoms (Imild). Asymptomatic individuals will recover over time. Upon having
mild symptoms, persons either recover (R) or require hospitalization (going from Isev to Ihosp or
Iicu) prior to recovery (R) or death (D).
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UGent deterministic compartmental model

We extend the classical SEIRD model to incorporate more expert knowledge on SARS-CoV-2 (Alle-
man et al., 2020). The model accounts for pre-symptomatic and asymptomatic transmission, as
these have been shown to be important contributors to SARS-CoV-2 spread. Furthermore, the
susceptibility to SARS-CoV-2, the severity of the disease and the susceptibility to a sub-clinical
infection depend on the age of the individual. Our model takes hospitals explicitly in account and
distinguishes between regular hospital wards (Cohort) and intensive care units (ICUs). From the
pooled dataset of two Ghent (Belgium) hospitals, we computed age-stratified mortalities in both
hospital wards. We used age-stratified social contact rates from a study by Willem et al. (2012) to
model age-specific social mixing. These social contact data are available at home, in the workplace,
in schools, on public transport, during leisure activities and during other activities. Community
mobility data from Google are used as weights for the contributions of social contacts. In this
way, the model can be used to simulate discrete government policies. We calibrated the model to
the daily Belgian hospitalizations between March 15th, 2020 and March 23rd, 2020 and found the
reproduction number to be R0 = 2.83, in line with the global consensus range of R0 = [2, 4]. A
flowchart of the model and its compartments is available in Figure 4. As previously mentioned, the
model is age-stratified and simulates the disease dynamics in nine age-bins of 10 years.
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Figure 4: Extended SEIRD dynamics used in this study. Nodes represent model states, edges denote
transfers.
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UNamur deterministic compartmental model

The model initially developed at UNamur is a continuous age-structured compartmental model
based on differential equations, calibrated on public Sciensano data on hospitalization, mortality
and serology from blood donors. Transmission between age classes is computed using social contact
data at different places (home, work and transport, school, leisure and others). The model has 65
estimated parameters with probability distribution given by an MCMC method. Nursing homes
are considered in a specific way as 2000 isolated entities with random infection and variable hospi-
talization policy during the first wave. Continuous care improvement from the first wave is taken
into consideration. The model specifically accounts for the under-reporting in new hospitalizations
due to transfers of patients from a non-COVID unit. The recent update of the model takes also
potential re-importations during the holidays season into account. Technical details can be found
in Franco (2020).
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General population (age classes i = 0-24, 25-44, 45-64, 65-74, 75+):
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Figure 5: Schematic view of the UNamur compartmental model.
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VUB time-series model

This analysis applies a time series approach wherein the log-number of events log(Xt) (with Xt

the number of events of interest) is assumed to follow a first order auto-regressive process with
a piecewise linear drift driven by a Gaussian cyclo-stationary process. The cyclo-stationarity is a
priori set to a weekly periodicity to account for the weekend effect. The model choice is derived
from a linearisation of the standard SEIR-model equations. The analysis uses the publicly available
national data daily distributed by Sciensano. Forecasts are obtained by transforming the time series
parameters to the parameters of the SEIR model equations proceeded by solving the SEIR differen-
tial equations numerically through a standard Runge-Kutta 4/5 numerical scheme. Currently the
model applies 23 parameters and 7 knot points.

The model is data-driven which serves as a prediction model with limited possibility of scenario sim-
ulations. The uncertainty analysis relies on the assumed Gaussian cyclo-stationary noise process.
The weekend-effect is modelled non-parametrically by analysis of the periodogram of the model
residuals w.r.t log(Xt). The Fourier coefficient corresponding to a weekly periodicity is used in the
residual’s spectral density.
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