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Introduction

After an initial outbreak in early 2020 in Wuhan, China, the Severe Acute Respiratory Syndrome
coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic. Despite the expected availability
of an effective vaccine, preventing COVID-19 outbreaks during the coming months will depend
on the successful implementation of non-pharmaceutical interventions, such as social distancing,
testing, contact tracing and quarantine. Well-informed models can assist policymakers in these
decisions. Within this consortium multiple models have been developed to perform scenario
analyses specifically tailored to the Belgian setting, for example, the individual-based model
of Willem et al. (2020a), the stochastic metapopulation model of Abrams et al. (2020), the
deterministic metapopulation model of Alleman et al. (2020), the deterministic metapopulation
model explicitly accounting for the nursing home population by Franco (2020) and a time-series
model by Barbe, Blotwijk, and Cools (2020).

All of the above models were created for the same purpose: to understand and study the spread of
SARS-CoV-2 in Belgium. However, modeling the transmission of an infectious disease implies a de-
tailed investigation and understanding of human behaviour, which is extremely difficult to translate
into a set of mathematical equations. As a consequence, each of the aforementioned mathematical
models relies on different assumptions and modelling techniques. By combining the different sce-
nario analyses into an ensemble, we account for the structural model uncertainty. This is standard
practise when it comes to model-based decision support, e.g. the IPCC considers the outcomes
of more than 10 different models for supporting its reports on climate change (Gerstengarbe et
al. 2015). Moreover, the ensemble can be used to mutually validate the projections over the course
of time. This report contains different long-term scenarios for the spread of SARS-CoV-2 in Bel-
gium from five predictive models with the purpose of informing upcoming SARS-CoV-2 mitigation
policies.

Methods

Long-term forecasting models

Three of the models used in this report (UHasselt, UGent and UNamur) are compartmental
models. These models capture the dynamics of the epidemic by dividing the population into
different compartments. In its most basic form: susceptible (S), infectious (I) and removed (R),
which is called an SIR model (Kermack and McKendrick 1927). The models differ in the way the
compartments are further subdivided to capture the details of COVID-19 disease, making each
model subject to different assumptions (Table 1). Closely related is the ULB model of Clesse,
which simulates similar COVID-19 disease dynamics but uses an age-homogeneous individual-based
approach. This model is more fit to study the effects of individual and household choices. The
aforementioned models are primarily based on disease mechanics, hence called mechanistic models,
and are well-fit to study long-term scenarios. Since spread of SARS-CoV-2 is mainly driven by
social contact behaviour, data on social contact behaviour at home, at school, in the workplace,
on public transport and during leisure activities are used to translate government policies into
tangible scenarios (Willem et al. 2012; Willem et al., 2020b).

Opposed is the VUB model of Barbe, Blotwijk, and Cools (2020), which is data-driven. It infers
the rate at which SARS-CoV-2 spreads directly by estimating the effective reproduction number
(Re) with a moving-window approach. The measured data up to one week in the past are used for
the calibration and the model prediction is validated on the most recent data. The disease spread
is somewhat similar to what can be expected in the compartmental models. Since the amount of
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social contacts are estimated from the hospitalization data, the model cannot be used to simulate
different scenarios. However, the model is useful to make a reliable extrapolation of the current
epidemiological situation. More details on the specific properties, assumptions and limitations of
each model can be found in the Supplementary materials.

Scenarios

First, we show again Scenario 4 from report 5.0 (assuming reduction in transmission reduction at
the level of the March-April 2020 lockdown), together with the additionally available data.
Second, we included in this report several new scenarios which are listed below. In all scenarios,
schools re-open on January 4th, 2021 (except high schools and universities). In all scenarios listed
below, schools are closed from December 21th, 2020 until on January 3rd, 2021, from February
15th, 2021 until February 21th, 2021 and from April 5th, 2021 until April 18th, 2021.

Scenario 1 Contact behaviour similar to the current epidemic trend.

Scenario 2a Contact behaviour similar to September 2020, starting on January 18th, 2021.

Scenario 2b Contact behaviour similar to September 2020, except for work-related contacts, start-
ing on January 18th, 2021. Work-related contacts are kept similar to December.

Scenario 2c Contact behaviour similar to September 2020, except for for leisure-related contacts,
starting on January 18th, 2021. Leisure-related contacts are kept similar to December.

Scenarios 2a-2c are motivated by the fact that relaxations of the current measures are expected to
take place at that time, and we hence assume that contact behaviour will gradually shift towards
the one in September, though work- and/or leisure-related contact might have to remain at current
lockdown levels. Furthermore, we use the individual-based model by Clesse (ULB) to illustrate the
possible impact of an increase of the contacts during the Christmas period.

Results

Comparison with RESTORE consortium report version 5.0

Figure 1 shows that the current epidemic curve is broadly consistent with the different model
forecasts. Whereas initially the new data closely followed the mean value as predicted by the
UHasselt model, the numbers of new hospitalisations over the last ten days show a clear deviation
from that pattern which is likely due to an unexpected increase in the social contact behaviour and
mobility (Google 2020).
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Figure 1: Long-term prediction (mean value with 95% prediction interval) of the number of new
hospitalizations in scenario 4 from RESTORE report 5.0, with the newly available data added.
Scenario 4 was defined as a March-May lockdown over the full course of the simulation. Models
were calibrated on October 24 and new data are shown up to December 15.

Scenario analyses

From Figures 2 and 3 it is clear that all models agree both qualitatively and quantitatively on the
further evolution of the number of new hospitalisations and the total hospital load if we extrapolate
the current contact behaviour (Scenario 1), and hence assume that the current measures remain
in place. Essentially, under that scenario, we expect that the pandemic will fade out and that we
will reach 75 hospitalisations per day between January 10 and 28. Those scenarios do not take
into account the potential increase of contacts during the Christmas period which is simulated in
Figure 4 and could further delay this threshold. The effect of opening schools on January 11th,
2021 or January 18th, 2021 under current contact behaviour (scenario 1) were studied, but yielded
similar results.

For what concerns the scenarios that rely on less stringent contact behaviour similar to September
2020, it is clear from Figures 2 and 3 that there is a considerable discrepancy between the different
model projections, though they agree qualitatively in the sense that they all indicate a substantial
resurgence of the epidemic from March 2021 onward for Scenarios 2a and 2b. Moreover, they
all indicate that the resurgence is most pronounced under Scenario 2a. The discrepancy between
the presented model projections can mainly be explained by the fact that the immunity simulated
according to the UGent model is more than 5% lower than the immunity values simulated according
to the Uhasselt and UNamur models. Besides, we should not forget that the models also differ in
terms of the underlying assumptions and mathematical equations. This once more underlines that
one should be careful when interpreting model projections quantitatively, though we may rely on
them to draw more qualitative conclusions.
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New hospitalisations

Figure 2: Long-term predictions of the number of new hospitalizations for the different scenarios
and models: mean value with 95% uncertainty interval. The mean value does not represent the
most likely evolution as every possibility within the prediction interval could occur. Models were
calibrated on December 13, 2020 and new data are shown up to December 15, 2020.
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Hospital load

Figure 3: Long-term predictions of the hospital load: mean value with 95% uncertainty interval.
The dashed lines indicate the number of available ICU beds for COVID-19 patients (1000: normal
capacity and 2000: increased capacity).
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Christmas and New Year scenario

A scenario is explored in which 80% of the total population exhibits behaviour according to the
measures implemented; the other 20% of the total population are assumed to meet 4 additional
contacts (from outside their own households). The effect is computed for when this happens
at Christmas only, New Year only and for both on Christmas and New Year. A transmission
probability of 50% was assumed for these events. There’s a lot of uncertainty on the individual
behaviour, so the accuracy of obtained results is limited.

The potential effect of increasing contacts during the Christmas and New Year period is clearly
illustrated in Figure 4. As expected, increasing the number of contacts during either Christmas or
New Year leads to a third peak in the number of hospitalisations. For these specific scenarios, the
third peak causes a delay of about one month to reach the threshold of 75 new hospitalisations per
day as compared to the baseline scenario with no contact intensification during the Christmas and
New Year periods. The size of this peak depends on the actual behaviour. Finally, as expected,
we observe that increasing the number of contacts during both Christmas and New Year leads to a
somewhat higher third peak and a consequent later decrease of the number of new hospitalisation
per day below 75 (mid March 2021).

Figure 4: Long-term prediction (mean value with 95% prediction interval) from ULB model of the
number of new hospitalizations if measures are not respected by a part of the population during
Christmas and New Year.
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Conclusions

In the previous version of the report (v5.0) it was stated that we would reach 75 new hospitalizations
between December 3rd, 2020 and January 10th, 2021 (Figure 1). Under the current social contact
behaviour, a stagnation of the declination of the new hospitalizations is observed and it is expected
that the level of 75 new hospitalizations can only be reached between January 10th, 2021 and
January 28th, 2021 (Figure 2). Christmas and New Year gatherings have the potential to induce
a further delay until March 10th, 2021 (Figure 4). The addition of additional leisure contacts can
lead to a larger increase in new hospitalizations than an equal increase in work related contacts
(Figure 2).

Limitations

There are several limitations for the models used in this report:

• The different scenarios are expressed in terms of changes in social contact behaviour. These
are used as proxies for changes in transmissibility which result from social distancing and
hygienic measures taken at different locations, e.g., at work and at school.

• All scenarios are hypothetical and we are not able to discern the more plausible scenario given
the unpredictable nature of adjusted social behaviour and future measures.

• The models do not take into account the spatial structure of the population.

• We do not account for seasonality or cross-immunity effects as quantitative evidence is scarce.

• Contact tracing, testing and self-isolation are not incorporated, except for the aggregated
effect on reducing the number of high-risk contacts.

• We assume no vaccination for now, due to uncertainty on the start date of vaccination and
the availability and efficacy of the vaccine. Therefore it is important not to over-interpret the
longer term predictions.

• The effects of Christmas and New Year parties are explored for illustrative purposes, but their
accuracy is limited.
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Table 1: Main properties, assumptions and limitations of each model. The complete model descrip-
tions can be found in the supplementary materials.

UHasselt/UA (Abrams et al. 2020) UGent (Alleman et al. 2020)

model type stochastic, extended SEIRD deterministic, extended SEIRD

nation-level nation-level

SDEs (exponentially distributed rates) ODEs

mechanistic mechanistic

properties age-stratified age-stratified

asymptomatic cases asymptomatic cases

pre-symptomatic infectiousness pre-symptomatic infectiousness

no re-susceptibility no re-susceptibility

no re-importations no re-importations

assumptions asymptomatic individuals 50% less infectious asymptomatic individuals not infectious

age-dependent probability of being age-dependent probability of being

asymptomatic & developing severe symptoms asymptomatic & developing severe symptoms

deaths in hospitals only deaths in hospitals only

distinction between ICU and non-ICU care distinction between ICU and non-ICU care,

recovery stay after ICU

UNamur (Franco 2020) VUB (Barbe, Blotwijk, and Cools 2020)

model type deterministic, extended SEIQRD deterministic, extended SIR

nation-level nation-level

ODEs ODEs

mechanistic moving window calibration (gray box)

properties age-stratified non-age-stratified

asymptomatic cases no asymptomatic cases

pre-symptomatic infectiousness no pre-symptomatic infectiousness

no re-susceptibility no re-susceptibility

re-importations from travellers no re-importations

assumptions estimated infectiousness per severity homogeneous hospitalization probability

age-dependent probability of being age-dependent probability of being

asymptomatic & developing severe symptoms asymptomatic & developing severe symptoms

separated deaths from nursing homes and hospital deaths in hospitals only

ULB (Clesse 2020)

model type stochastic, extended SEIQRD

nation-level

individual-based model

mechanistic

properties non-age-stratified

no asymptomatic cases

no pre-symptomatic infectiousness

no re-susceptibility

no re-importations

no vaccination

assumptions accounts for transmission in households

temperature correlation for infectiousness

short and long-term hospitalizations

shorter stays at hospitals in summer
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Supplementary materials

Model comparison

Of the five models, four models (Abrams, Alleman, UNamur and Barbé) assume homogeneous
mixing of the entire population. As a non-spatial individual-based model, Clesse is the only ex-
ception. Currently, two patch models are under development. These allow to simulate the disease
at a smaller spatial resolution (municipalities) and account for the effects of work & leisure mobil-
ity. Of the five models, four models (Abrams, Alleman, Franco and Clesse) extended the classical
SIRD model structure to an extension of a SEIRD model structure. The addition of an exposed
(E) compartment accounts for individuals being infected with the virus who are not yet infectious
(latent). The infectious (I) compartment is split to account for the effects of pre-symptomatic,
symptomatic and fully asymptomatic transmission, as these have been shown to be important in
the spread of SARS-CoV-2 (Ganyani et al. 2020; Gudbjartsson et al. 2020). Opposed is the model
of (Barbe, Blotwijk, and Cools 2020), which uses SIRD dynamics. The models of Abrams, Alleman
and Franco split every compartment into age layers to account for different COVID-19 severity in
individuals of different ages, as COVID-19 shows remarkably higher incidences in older individuals
(Faes et al. 2020). These models then differ subtly in the hospital dynamics and assumptions made.
Some of the key differences are: Abrams et al. (2020) and Alleman et al. (2020) assume deaths only
arise in hospitals, while Franco (2020) accounts for nursing home deaths. Alleman et al. (2020) as-
sume mildly symptomatic individuals self-quarantine while Abrams et al. (2020) and Franco (2020)
assume these individuals are still infectious to some degree. The model of Franco (2020) does
not explicitly account for intensive care while the models of Abrams et al. (2020) and Alleman
et al. (2020) do. Four models use a mechanistic approach (Abrams, Alleman, Franco and Clesse)
while one model (Barbé) uses a data-driven approach. A detailed overview of the key differences is
provided in Table 1. In what follows, each model is discussed separately in more detail.

SIMID (UHasselt/UAntwerp) (Abrams et al. 2020)

We use a stochastic discrete age-structured compartmental model (Abrams et al. 2020) cali-
brated on high-level hospitalization data (Sciensano 2020), serial serological survey data (Herzog
et al. 2020) and Belgian mortality data (Sciensano 2020). More specifically, the stochastic model
predicts (stochastic realisations of) the daily number of new hospitalizations per age group (i.e., 10
year age groups). The modeling approach depends on assumptions with regard to the transmission
process which inevitably implies an underestimation of the level of uncertainty. As the model-based
long-term predictions rely on changes in social contact behaviour following the exit strategy
initiated May 4, 2020, we present such predictions under various scenarios which aim at giving
some insights in the future course of the epidemic without being able to assign a probability to
each scenario related to the likelihood of a given scenario to become reality. We do account for the
current resurgence of COVID-19 in the selection and presentation of plausible scenarios. In this
model we are not explicitly accounting for re-importation of the pathogen in the population
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Figure 5: Schematic overview of the flows of individuals in the compartmental model: Following
SARS-CoV-2/COVID-19 infection susceptible individuals (S) move to an exposed state (E) and
after a latent period individuals further progress to a pre-symptomatic state (Ipresym) in which
they can infect others. Consequently, individuals stay either completely symptom-free (Iasym) or
develop mild symptoms (Imild). Asymptomatic individuals will recover over time. Upon having
mild symptoms, persons either recover (R) or require hospitalization (going from Isev to Ihosp or
Iicu) prior to recovery (R) or death (D).
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UGent (Alleman et al. 2020)

We extend the classical SEIRD model to incorporate more expert knowledge on SARS-CoV-2
(Alleman et al. 2020). The model accounts for pre-symptomatic and asymptomatic transmission, as
these have been shown to be important contributors to SARS-CoV-2 spread (Ganyani et al. 2020;
Wei et al. 2020; Gudbjartsson et al. 2020). Furthermore, the susceptibility to SARS-CoV-2, the
severity of the disease and the susceptibility to an asymptomatic infection depend on the age of the
individual (Davies et al. 2020). Our model takes hospitals explicitly in account and distinguishes
between regular hospital wards (Cohort) and intensive care units (ICUs). Our model further
accounts for a recovery stay of 6 days in Cohort after an ICU stay. From the pooled dataset of two
Ghent (Belgium) hospitals, we computed the mortalities, length-of-stays in both hospital wards
and the probability of needing intensive care. A flowchart of the model and its compartments is
available in Figure 8.

We used age-stratified social contact rates from a study which has been made available using the
Socrates tool (Willem et al., 2020b) to model age-specific social mixing. These social contact data
are available at home, in the workplace, in schools, on public transport, during leisure activities and
during other activities. The Community mobility data from Google (2020) are used as the primary
weights for the contributions of work (Gwork), transport (Gtransport), recreation (Gretail & recreation)
and other contacts (Gsupermarkets). Next, a mentality parameter Ω is introduced for home inter-
actions, school interactions, work interactions and for the combination of transport, leisure and
other interactions. These mentality parameters scale the relative contributions of each interaction
matrix under lockdown measures and must be inferred from hospitalization data (Sciensano 2020)
under varying social policies. All the above results in the following linear combination of interaction
matrices to model social policies,

Nc, total = ΩhomeNc, home + ΩschoolsNc, schools + ΩworkGworkNc, work+

Ωrest

[
GtransportNc, transport +Gretail & recreationNc, leisure +GsupermarketsNc, others

]
,

(1)

The model further takes into account the effect of social inertia when measures are taken. In reality,
social restrictions or relaxations represent a change in behaviour which is gradual and cannot be
modeled using a step-wise change of the social interaction matrix Nc. In our model, we use a
delayed ramp to model compliance,

Nc
k = Nc, old + fk(Nc, new −Nc, old) (2)

where,

fk =


0.0, if k ≤ τ
k
l −

τ
l , if τ < k ≤ τ + l

1.0, otherwise

where τ is the number of days before measures start having an effect and l is the number of additional
days after the time delay until full compliance is reached. k denotes the number of days since a
change in social policy. The seven model parameters (transmission rate, β, compliance model, l and
τ , and the four mentality parameters) were calibrated to the daily Belgian hospitalizations between
September 1st, 2020 and December 13rd, 2020. First a particle swarm optimization (Eberhart and
Kennedy 1995) is performed to find the global minimum of the poisson objective function. Next, the
optimal parameter set is used as a starting point for the red-blue Markov-Chain Monte-Carlo method
proposed by Goodman and Weare (2010). The chain is run until the length exceeds 50 times the
integrated autocorrelation time. Subsequently, the chain is thinned and the cornerplots (Foreman-
Mackey 2016) are examined to analyse correlations between model parameters and unidentifiability
issues. All calibrated parameters except the home mentality parameter (Ωhome) were identifiable.
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Figure 6: Extended SEIRD dynamics used in this study. Nodes represent model states, edges denote
transfers.
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UNamur (Franco 2020)

The model initially developed at UNamur (Franco 2020) is a continuous age-structured compart-
mental model based on differential equations, calibrated on public Sciensano data on hospitalization,
mortality and serology from blood donors.

The Belgian population is divided into 8 compartments in order to take account of the different
possible stages of the disease as well as the separation between asymptomatic and symptomatic
people with a different infectiousness. Each compartment is divided into 5 age classes with different
characteristics concerning the behaviour and evolution of the disease. A schematic view of the
structure of the model is presented in Figure 7. The transmission of the coronavirus between
all classes is computed using social contact data at different places (home, work, school, leisure)
(Willem et al. 2012; Willem et al., 2020b). Except social contact data, all of the 70 parameters of
the model are estimated using a Monte Carlo method, hence there is no assumption coming from
others studies. Nursing homes are modelled as isolated entities in order to take account of the
different spread timing of the coronavirus compared to the general population. Specific parameters
for the situation in nursing homes take account of a variable hospitalisation policy based on hospi-
tals load as well as a probability that deaths coming directly from nursing homes are related to the
covid-19. There is a specific estimation of potential reimportations coming from travellers during
the holiday period. The model is mainly calibrated using hospitalisations and deaths using both
incidence and prevalence data (depending on which one is the more appropriate for the considered
data) coming from Sciensano’s public raw data (Sciensano 2020). The model specifically accounts
for the under-reporting in new hospitalizations due to transfers of patients from a non-COVID
unit as well as improvement of care methods at the hospital since the first wave. Additional
constraints on seroprevalence are coming from Sciensano’s serological studies on blood donors
as reported in Sciensano epidemiological reports. The only positive PCR tests which are taken
into consideration are those coming from nursing homes from an overall test campaign in April-May.

All the technical details as well as estimated parameters can be found in (Franco 2020).
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General population (age classes i = 0-24, 25-44, 45-64, 65-74, 75+):
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Figure 7: Schematic view of the UNamur compartmental model.
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VUB (Barbe, Blotwijk, and Cools 2020)

This analysis applies a time series approach wherein the log-number of events log(Xt) (with Xt

the number of events of interest) is assumed to follow a first order auto-regressive process with
a piecewise linear drift driven by a Gaussian cyclo-stationary process. The cyclo-stationarity
is a priori set to a weekly periodicity to account for the weekend effect. The model choice is
derived from a linearisation of the standard SEIR-model equations. The analysis uses the publicly
available national data daily distributed by Sciensano. Forecasts are obtained by transforming the
time series parameters to the parameters of the SEIR model equations proceeded by solving the
SEIR differential equations numerically through a standard Runge-Kutta 4/5 numerical scheme.
Currently the model applies 23 parameters and 7 knot points.

The model is data-driven which serves as a prediction model with limited possibility of scenario
simulations. The uncertainty analysis relies on the assumed Gaussian cyclo-stationary noise
process. The weekend-effect is modelled non-parametrically by analysis of the periodogram of the
model residuals w.r.t log(Xt). The Fourier coefficient corresponding to a weekly periodicity is used
in the residual’s spectral density.
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ULB (Clesse, 2020)

This individual-based SEIQRD model is calibrated on the daily number of hospitalizations. The
model is not aged-structured but it implements optional effects such as intra-familial contamination,
week-end fluctuations, two populations with different contact behaviours, and a possible correlation
between the reproduction number and the averaged daily temperature. Eleven periods, limited by
ten time knots, are considered according to the evolution of measures taken by Belgian authorities,
and one reproduction number is associated to each of them. Stochasticity is included on the
duration of the infecting period as well as on the time between infection and hospitalization. The
effect of Christmas and/or New year parties is implemented through an effective one-day variation
of the reproduction number corresponding to product of the averaged number of additional
contacts, the probability of transmission, and the fraction of the involved population.

A total of 13 calibrated parameters are considered. The parameter means, best-fits and uncertainties
are reconstructed through a Markov-Chain-Monte-Carlo method based on the Metroplolis-Hastings
algorithm, using the public MontePython code. Details on the model and parameter assumptions
(fixed, varying...) are available on demand.

S
Susceptible

E
Exposed

MI
Infectious, no or

mild symptoms

SI
Infectious, strong

symptoms

Qhosp

Quarantined =hos-

pitalized, short-term

QICU

Quarantined =hospital-

ized, long-term (ICU)

R/D
Recovered

or Deceased

Re

(1 − fhosp)

fhosp

(1 − fICU)

fICU

Figure 8: Schematic view of the ULB compartmental model. Each compartment is doubled in order
to allow the analysis of two populations with different contact behaviours.
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