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Summary

e This report is an update version of report 7.0: we added the data until March 9th and left
out the most unlikely/outdated scenarios such as opening on March 1st and a transmission
increase of 70 % for the 501Y.V1 variant. The conclusions remain the same.

e This report describes the possible impact of the 501Y.V1 variant and vaccination for Belgium
and illustrates the importance of epidemic control in the period to come.

e Due to its larger transmission potential, the 501Y.V1 variant is expected to completely take
over the old variants by mid-March. Due to large uncertainty on the transmission character-
istics exerted by the 501Y.V1 variant, we explore increases in transmission of 30 % and 50 %.
The variant might cause, if the current transmission dynamics are sustained, a challenge but
not an insurmountable problem for epidemic control.

e Lifting measures can, in spite of the ongoing vaccination campaign, still lead to a third wave.
However, postponing deconfinement allows the vaccination campaign to offset the increased
transmission risk and associated disease burden. It is therefore essential to release influential
measures to reduce transmission rather later than sooner.

e Vaccination and seasonality (currently not modelled) are expected to have a positive impact
on the incidence of new hospitalisations in the coming period. However, recent evidence from
the UK indicated that the 501Y.V1 variant is associated with a higher per-case probability
of severe and lethal disease. This latter aspect has been ignored in the simulations in this
document.

e Our results are consistent with results obtained in UK, NL and CH (cfr: Recover and EpiPose
consortium meeting reports).

Introduction

After an initial outbreak of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) in
early 2020 in Wuhan, China, the epidemic has evolved into a global pandemic. The prevention of
COVID-19 outbreaks has been depending on the successful implementation of non-pharmaceutical
interventions, such as social distancing, testing, contact tracing and quarantine. Recently, vaccines
have become available and enable many new deconfinement strategies, which can be evaluated via
data-driven models to assist in the policy making process. Within this RESTORE consortium,
multiple mathematical models have been applied to perform scenario analyses tailored to the
Belgian setting, for example, the stochastic compartmental model of Abrams et al. (2020), the
deterministic metapopulation model of Alleman et al. (2020), the deterministic compartmental
model, explicitly accounting for the nursing home population, by Franco (2020), the individual-
based model by Clesse (2020) and a time-series model by Barbe, Blotwijk, and Cools (2020).

All these models have been independently created for the same purpose: to understand and study
the spread of SARS-CoV-2 in Belgium. However, modeling the transmission of an infectious disease
implies a detailed investigation and understanding of human behaviour, which is not trivial to
translate into a set of mathematical equations. As a consequence, each of the mathematical models
relies on different assumptions and modelling techniques. By combining the different scenario
analyses into an ensemble, we investigate structural model uncertainty. This is standard practise
when it comes to model-based decision support, e.g. the Intergovernmental Panel on Climate Change
(IPCC) considers the outcomes of more than 10 different models for supporting its reports on climate
change (Gerstengarbe et al. 2015). Moreover, an ensemble can be used to mutually validate the



projections over time. This report contains different long-term scenarios for the spread of SARS-
CoV-2 in Belgium with the purpose of informing upcoming mitigation/relaxation policies.

Methods

Long-term forecasting models

All models used in this report (SIMID, UGent and UNamur) are compartmental models and
capture the dynamics of the epidemic by dividing the population into different compartments.
By default, it contains susceptible (S), infectious (I) and removed (R) compartments, which is
called an SIR model (Kermack and McKendrick 1927). The models used here differ in the way
the compartments are further subdivided to capture the details of COVID-19 disease dynamics,
making each model subject to different assumptions (Table 2). The models are based on disease
mechanics, hence called mechanistic models, and are well-fit to study long-term scenarios. Since
the spread of SARS-CoV-2 is mainly driven by social contact behaviour, data on social contact
behaviour at different locations, e.g., home, school, workplace, public transport and during leisure
activities are used to translate government policies into tangible scenarios (Willem et al. 2012;
Willem et al., 2020Db).

More details on the specific properties, assumptions and limitations of each model can be found in
the Supplementary materials.

The 501Y.V1 variant

The scenarios in this consider the introduction of a new variant of concern (VOC), i.e. 501Y.V1
or VOC-202012/01 (lineage B.1.1.7), in the Belgian population from January 1, 2020 onward.
The most recent data indicate that this VOC is more transmissible than the original strain,
with an increase varying between 30% and 50% compared to the original strain (hereafter
referred to as wild-type strain) (Wenseleers 2021). To account for the uncertainty with regard
to the increase in transmission potential and to show the impact thereof, we have used either a
30% or 50% increase in transmissibility as compared to the wild-type strain in the studied scenarios.

Other new VOCs such as the 501Y.V2 or 501Y.V3 variants, are not accounted for, since their
prevalence in Belgium at this time is low and their transmissibility is uncertain. Although some
preliminary evidence suggests that the probability of hospitalization and death is higher for 501Y.V1,

the models currently do not account for this increase (Nicholas G. Davies et al. 2021; Horby et
al. 2021).

Vaccination campaign

All scenarios account for the national vaccination campaign in place. Since age-specific data on
the administered vaccinations are not available yet and there is no official communication on the
planned number of doses, we used a hypothetical vaccination scheme to reach full population
coverage by the end of the summer as published by Fluit, Segers, and Serrure (2021) in de Tijd
(see Table 1 and Figure 1).

We note that the vaccination scheme published on January 16th, 2021 is subject for discussion.
The SIMID model slightly deviates from the scheme up to February 11th by including the reported
uptake by Sciensano, which is little less compared to the uptake described above. None of the
models can identify professional functions nor co-morbidity’s, hence the vaccination of health care
personnel, general practitioners and individuals with underlying medical conditions is incorporated



by the vaccination of a fraction of the working age population (20-65). Therefore, the goal and
additional advantage of prioritising these groups in avoiding deaths and virus spread among
the most vulnerable people, is not captured by the models. Moreover, in the current absence
of consensus in the literature on the effect of vaccination on transmission, we implemented an
“all-or-nothing” vaccination model implying that a certain percentage of vaccinated individuals is
fully protected against infection. As such, we do not account for the possibility that vaccinated
people can acquire protection against severe disease and/or hospitalization but still transmit the
virus (i.e. a leaky vaccine model).

For simplicity, the models assume that vaccinated people are fully protected one month after
their first vaccination. Despite the reported differences in vaccine efficacy observed during for the
vaccines that are currently licensed (Pfizer/Moderna/Astra Zeneca), we assumed a fixed effective
coverage of 70%.

Months Doses/day Population

January 2021 31.765 Residents and personnel of nursing homes and care
personnel in hospitals

February 2021 45.897 General practitioners

March-April 2021  128.499 65+ age group and individuals with underlying medi-
cal conditions

May-August 2021  78.358 People involved in essential sectors and the general
184 population

Table 1: Targeted vaccination strategy to reach full population coverage by August 2021 (Fluit,
Segers, and Serrure 2021).
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Figure 1: Total number of individuals vaccinated with a 1st dose (black line) and daily number of
available 1st doses (grey dashed line) over time according to the implemented vaccination strategy.



Scenarios

We calibrated the models with Belgian incidence data until February 1, 2021. In all scenarios,
schools are closed from February 15th-21th, 2021, and from April 5th-18th, 2021.

Scenario 1 Extrapolation of current social contact behaviour.

Scenario 2 Contact behaviour similar to September 2020, starting on March 1st, 2021 (omitted
from this update).

Scenario 3 Contact behaviour similar to September 2020, starting on April 1st, 2021.

Scenario 4 Contact behaviour similar to September 2020, starting on May 1st, 2021.

Each scenario assumes that the targeted vaccination scheme is followed with an effective coverage
of 70%. For each scenario’s, we now include 2 options regarding the VOC:

a) Assuming 30% more transmissibility of the 501Y.V1 variant.

b) Assuming 50% more transmissibility of the 501Y.V1 variant.

Results

Extrapolation of the current situation (Scenario 1)

Figure 2 shows the combined impact of the 501Y.V1 variant and the vaccination campaign under
the assumption that the transmission potential of the 501Y.V1 variant is 30 %, or 50 % more
compared to the wild-type. In the best case (30 % increase), the ongoing vaccination campaign
alleviates the increase in transmission potential, with the hospitalisations admissions reaching the
threshold of 75 new hospitalizations between March 9th, 2021 and May 14th, 2021. In Report 6.1
it was stated that we would reach the 75 new hospitalizations threshold between January 10th
and March 11th, though these estimations did not account for the emergence of the 501Y.V1 variant.

In the scenario of a 50 % increase, a third COVID-19 wave occurs, albeit not as large as the second
COVID-19 wave of October-November 2020. Overall, the 501Y.V1 variant will most likely not cause
capacity issues for the Belgian health care system if we maintain the current social contact dynamics.
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Figure 2: Model trajectories for the number of new hospitalizations under an extrapolation of the
current contact behaviour: mean with 95% confidence interval. Models calibrated on February 1,
2020; new data shown up to March 9th, 2021.

Deconfinement strategies (Scenarios 3-4)

An increase in social mixing, and as such transmission, from April 1st onward similar to the dynamics
we estimated for September 2020 (Scenarios 3a and 3b), leads to a third COVID-19 wave which
could overload hospitals’ capacities. Only for one model and in the most optimistic case of a 30
% transmissibility, this is not the case. In addition, the sooner social contacts increase, the faster
the new strain can become dominant. A relaxation with contact behaviour similar to September
2020 from May 1st onward (Scenarios 4a and 4b) leads to a more controllable situation, even if
the transmissibility of the 501Y.V1 variant is high. Releasing measures later allows the vaccination
campaign to anticipate more on the increase in transmission. For the hospital admissions and load,
it is better to release measures rather later than sooner.



Hospital incidence
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Figure 3: Model trajectories for the number of new hospitalizations for the different scenarios: mean
value with 95% confidence interval. Models were calibrated on February 1, 2020 and new data are
shown up to March 9th, 2021.



Hospital load
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Limitations

There are several limitations for the models used in this report,

The different scenarios are expressed in terms of changes in social contact behaviour. These
are used as proxies for changes in transmissibility, which result from the combination of social
distancing and hygienic measures taken at different locations, e.g., at home, at work and at
school.

Scenarios should not to be interpreted as predictions, since we are not able to discern the
most plausible scenario given the unpredictable nature of adjusted social behaviour, future
measures, the appearance of new strains and uncertainties with regard to vaccine efficacy
and supply. Those scenarios are assumed without upcoming major change in governmental
measures not already assumed within the scenarios, hence, these scenarios only represent
projections from a constant or already estimated situation.

The models do not consider the spatial structure of the population. Although at Ghent
University, a spatially explicit model is nearing completion.

We do not account for seasonality nor cross-immunity, although these effects might influence
the transmission dynamics.

The effects of contact tracing, testing and self-isolation are incorporated indirectly within the
estimated transmission potential within the population over time.

We do not account for other VOCs than the 501Y.V1 variant although the 501Y.V2 variant and
the 501Y.V3 variant have been detected in Belgium by February 2021. Preliminary evidence
suggests the 501Y.V2 variant has roughly the same transmissibility as the 501Y.V1 variant,
meaning the results should be sufficiently robust as this variant becomes more prevalent.

The models do not accommodate for VOC-specific hospitalization probabilities and mortality
rates. This could lead to an underestimation of the impact of the VOC on the number of new
hospitalizations as preliminary evidence suggests the disease burden may be higher (Nicholas
G. Davies et al. 2021; Horby et al. 2021).

Vaccine protection is included as a step-function representing an all-or-nothing immunity one
month after the first dose. We do not account for an incremental build-up of immunity, nor a
differential protection for severity of disease instead of infection. The effective coverage equals
70 % for all results shown in this report. Differences in effectiveness between different vaccines
have not been addressed.

The vaccination strategy implemented in the scenarios is based on an optimal vaccine scheme
to reach full coverage by August 2021. In the future, there might be a significant difference
between the assumed vaccination strategy and the actual one, which will be addressed in
future reports.

The advantage of prioritising vulnerable people and care personnel is underestimated in all
models, since only age-specific vaccination effects are captured.
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Table 2: Main properties, assumptions and limitations of each model. The complete model descrip-
tions can be found in the supplementary materials.

SIMID (Abrams et al. 2020)

UGent (Alleman et al. 2020)

model type stochastic, extended SEIRD deterministic, extended SEIRD
nation-level nation-level
SDEs (exponentially distributed rates) ODEs
mechanistic mechanistic
properties age-stratified age-stratified
asymptomatic cases asymptomatic cases
pre-symptomatic infectiousness pre-symptomatic infectiousness
no re-susceptibility no re-susceptibility
no re-importations no re-importations
assumptions asymptomatic individuals 50% less infectious asymptomatic individuals not infectious
age-dependent probability of being age-dependent probability of being
asymptomatic & developing severe symptoms asymptomatic & developing severe symptoms
deaths in hospitals only deaths in hospitals only
distinction between ICU and non-ICU care distinction between ICU and non-ICU care,
recovery stay after ICU
UNamur (Franco 2020) VUB (Barbe, Blotwijk, and Cools 2020)
model type deterministic, extended SEIQRD deterministic, extended SIR
nation-level nation-level
ODEs ODEs
mechanistic moving window calibration (gray box)
properties age-stratified non-age-stratified
asymptomatic cases no asymptomatic cases
pre-symptomatic infectiousness no pre-symptomatic infectiousness
no re-susceptibility no re-susceptibility
re-importations from travellers no re-importations
assumptions estimated infectiousness per severity homogeneous hospitalization probability
age-dependent probability of being age-dependent probability of being
asymptomatic & developing severe symptoms asymptomatic & developing severe symptoms
separated deaths from nursing homes and hospital  deaths in hospitals only
ULB (Clesse 2020)
model type stochastic, extended SEIQRD
nation-level
individual-based model
mechanistic
properties non-age-stratified
no asymptomatic cases
no pre-symptomatic infectiousness
no re-susceptibility
no re-importations
no vaccination
assumptions accounts for transmission in households

temperature correlation for infectiousness
short and long-term hospitalizations
shorter stays at hospitals in summer

12



Supplementary materials

Model comparison

Of the five models, four models (Abrams, Alleman, UNamur and Barbé) assume homogeneous
mixing of the entire population. As a non-spatial individual-based model, Clesse is the only ex-
ception. Currently, two patch models are under development. These allow to simulate the disease
at a smaller spatial resolution (municipalities) and account for the effects of work & leisure mobil-
ity. Of the five models, four models (Abrams, Alleman, Franco and Clesse) extended the classical
SIRD model structure to an extension of a SEIRD model structure. The addition of an exposed
(E) compartment accounts for individuals being infected with the virus who are not yet infectious
(latent). The infectious (I) compartment is split to account for the effects of pre-symptomatic,
symptomatic and fully asymptomatic transmission, as these have been shown to be important in
the spread of SARS-CoV-2 (Ganyani et al. 2020; Gudbjartsson et al. 2020). Opposed is the model
of (Barbe, Blotwijk, and Cools 2020), which uses SIRD dynamics. The models of Abrams, Alleman
and Franco split every compartment into age layers to account for different COVID-19 severity in
individuals of different ages, as COVID-19 shows remarkably higher incidences in older individuals
(Faes et al. 2020). These models then differ subtly in the hospital dynamics and assumptions made.
Some of the key differences are: Abrams et al. (2020) and Alleman et al. (2020) assume deaths only
arise in hospitals, while Franco (2020) accounts for nursing home deaths. Alleman et al. (2020) as-
sume mildly symptomatic individuals self-quarantine while Abrams et al. (2020) and Franco (2020)
assume these individuals are still infectious to some degree. The model of Franco (2020) does
not explicitly account for intensive care while the models of Abrams et al. (2020) and Alleman
et al. (2020) do. Four models use a mechanistic approach (Abrams, Alleman, Franco and Clesse)
while one model (Barbé) uses a data-driven approach. A detailed overview of the key differences is
provided in Table 2. In what follows, each model is discussed separately in more detail.
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SIMID (UHasselt/UAntwerp) (Abrams et al. 2020)

We use a stochastic discrete age-structured compartmental model (Abrams et al. 2020) cali-
brated on high-level hospitalization data (Sciensano 2020), serial serological survey data (Herzog
et al. 2020) and Belgian mortality data (Sciensano 2020). More specifically, the stochastic model
predicts (stochastic realisations of) the daily number of new hospitalizations per age group (i.e., 10
year age groups). The modeling approach depends on assumptions with regard to the transmission
process which inevitably implies an underestimation of the level of uncertainty. As the model-based
long-term projections rely on changes in social contact behaviour following the exit strategy
initiated May 4, 2020, we present such projections under various scenarios which aim at giving
some insights in the future course of the epidemic without being able to assign a probability to
each scenario related to the likelihood of a given scenario to become reality. We do account for the
current resurgence of COVID-19 in the selection and presentation of plausible scenarios. In this
model we are not explicitly accounting for re-importation of the pathogen in the population

Figure 5: Schematic overview of the flows of individuals in the compartmental model: Following
SARS-CoV-2/COVID-19 infection susceptible individuals (S) move to an exposed state (F) and
after a latent period individuals further progress to a pre-symptomatic state (Ipresym) in which
they can infect others. Consequently, individuals stay either completely symptom-free (Iogym) or
develop mild symptoms (I,,;4). Asymptomatic individuals will recover over time. Upon having
mild symptoms, persons either recover (R) or require hospitalization (going from I, to Ipesp Or
Iicy,) prior to recovery (R) or death (D).
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UGent (Alleman et al. 2020)

We extend the classical SEIRD model to incorporate more expert knowledge on SARS-CoV-2
(Alleman et al. 2020). The model accounts for pre-symptomatic and asymptomatic transmission, as
these have been shown to be important contributors to SARS-CoV-2 spread (Ganyani et al. 2020;
Wei et al. 2020; Gudbjartsson et al. 2020). Furthermore, the susceptibility to SARS-CoV-2, the
severity of the disease and the susceptibility to an asymptomatic infection depend on the age of
the individual (Nicholas G Davies et al. 2020). Our model takes hospitals explicitly in account
and distinguishes between regular hospital wards (Cohort) and intensive care units (ICUs). Our
model further accounts for a recovery stay of 6 days in Cohort after an ICU stay. From the pooled
dataset of two Ghent (Belgium) hospitals, we computed the mortalities, length-of-stays in both
hospital wards and the probability of needing intensive care. A flowchart of the model and its
compartments is available in Figure 6.

We used age-stratified social contact rates from a study which has been made available using the
Socrates tool (Willem et al., 2020b) to model age-specific social mixing. These social contact data
are available at home, in the workplace, in schools, on public transport, during leisure activities and
during other activities. The Community mobility data from Google (2020) are used as the primary
weights for the contributions of work (Gyork), transport (Giransport), recreation (Ghetail & recreation)
and other contacts (Gsupermarkets). Next, an effectiveness parameter  is introduced for home
interactions, school interactions, work interactions and for the combination of transport, leisure and
other interactions. These effectiveness parameters scale the relative contributions of each interaction
matrix under lockdown measures and must be inferred from hospitalization data (Sciensano 2020)
under varying social policies. All the above results in the following linear combination of interaction
matrices to model social policies,

NC, total(t) = QhomeNc, home + Qschools-[_fschools(t)-Z\rc, schools 1 Qworkaork(t)Nc, work T

Q1rest Gtransport (t)Nc, transport + Gretail & recreation (t)Nc, leisure + Gsupermarkets (t)]\rc7 others | »
(1)

The model takes into account the effect of social inertia when lockdown measures are taken. In
reality, lockdown restrictions represent a large change in behaviour which is gradual and cannot
be modeled using a step-wise change of the social interaction matrix IN.. In our model, we use a
delayed ramp to model compliance,

Nc:Nc, 01d+fk(Nc, new_Nc, old) (2)
where,
00, ifk<r
fr=gk 1 ifr<k<T+I
1.0, otherwise

where 7 is the number of days before measures start having an effect and [ is the number of
additional days after the time delay until full compliance is reached. k denotes the number of
days since a change in social policy. The nine model parameters (transmission rate, Ro(53,w,dy);
compliance model, [ and 7; and the four effectiveness parameters) were calibrated to the daily
Belgian hospitalizations between September 1st, 2020 and Februrary 1st, 2021. First a particle
swarm optimization (Eberhart and Kennedy 1995) is performed to find the global minimum of the
Poisson objective function. Next, the optimal parameter set is used as a starting point for the
red-blue Markov-Chain Monte-Carlo method proposed by Goodman and Weare (2010). The chain
is run until the length exceeds 50 times the integrated autocorrelation time. Subsequently, the
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Hospitalized

Infected Infectious

Figure 6: Extended SEIRD dynamics used in this study. Nodes represent model states, edges denote
transfers.

chain is thinned and the cornerplots (Foreman-Mackey 2016) are examined to analyse correlations
between model parameters and unidentifiability issues. All calibrated parameters were identifiable.
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UNamur (Franco 2020)

The model initially developed at UNamur (Franco 2020) is a continuous age-structured compart-
mental model based on differential equations, calibrated on public Sciensano data on hospitalization,
mortality and serology from blood donors.

The Belgian population is divided into 8 compartments in order to take account of the different
possible stages of the disease as well as the separation between asymptomatic and symptomatic
people with a different infectiousness. Each compartment is divided into 5 age classes with different
characteristics concerning the behaviour and evolution of the disease. A schematic view of the
structure of the model is presented in Figure 7. The transmission of the coronavirus between
all classes is computed using social contact data at different places (home, work, school, leisure)
(Willem et al. 2012; Willem et al., 2020b). Except social contact data, all of the 70 parameters of
the model are estimated using a Monte Carlo method, hence there is no assumption coming from
others studies. Nursing homes are modelled as isolated entities in order to take account of the
different spread timing of the coronavirus compared to the general population. Specific parameters
for the situation in nursing homes take account of a variable hospitalisation policy based on hospi-
tals load as well as a probability that deaths coming directly from nursing homes are related to the
covid-19. There is a specific estimation of potential reimportations coming from travellers during
the holiday period. The model is mainly calibrated using hospitalisations and deaths using both
incidence and prevalence data (depending on which one is the more appropriate for the considered
data) coming from Sciensano’s public raw data (Sciensano 2020). The model specifically accounts
for the under-reporting in new hospitalizations due to transfers of patients from a non-COVID
unit as well as improvement of care methods at the hospital since the first wave. Additional
constraints on seroprevalence are coming from Sciensano’s serological studies on blood donors
as reported in Sciensano epidemiological reports. The only positive PCR tests which are taken
into consideration are those coming from nursing homes from an overall test campaign in April-May.

All the technical details as well as estimated parameters can be found in (Franco 2020).
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General population (age classes ¢ = 0-24, 25-44, 45-64, 65-74, 75+):
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Figure 7: Schematic view of the UNamur compartmental model.
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VUB (Barbe, Blotwijk, and Cools 2020)

This analysis applies a time series approach wherein the log-number of events log(X;) (with X,
the number of events of interest) is assumed to follow a first order auto-regressive process with
a piecewise linear drift driven by a Gaussian cyclo-stationary process. The cyclo-stationarity
is a priori set to a weekly periodicity to account for the weekend effect. The model choice is
derived from a linearisation of the standard SEIR-model equations. The analysis uses the publicly
available national data daily distributed by Sciensano. Projections are obtained by transforming
the time series parameters to the parameters of the SEIR model equations proceeded by solving the
SEIR differential equations numerically through a standard Runge-Kutta 4/5 numerical scheme.
Currently the model applies 23 parameters and 7 knot points.

The model is data-driven which serves as a projection model with limited possibility of scenario
simulations. The uncertainty analysis relies on the assumed Gaussian cyclo-stationary noise
process. The weekend-effect is modelled non-parametrically by analysis of the periodogram of the
model residuals w.r.t log(X;). The Fourier coefficient corresponding to a weekly periodicity is used
in the residual’s spectral density.
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ULB (Clesse, 2020)

This individual-based SEIQRD model is calibrated on the daily number of hospitalizations. The
model is not aged-structured but it implements optional effects such as intra-familial contamination,
week-end fluctuations, two populations with different contact behaviours, and a possible correlation
between the reproduction number and the averaged daily temperature. Eleven periods, limited by
ten time knots, are considered according to the evolution of measures taken by Belgian authorities,
and one reproduction number is associated to each of them. Stochasticity is included on the
duration of the infecting period as well as on the time between infection and hospitalization. The
effect of Christmas and/or New year parties is implemented through an effective one-day variation
of the reproduction number corresponding to product of the averaged number of additional
contacts, the probability of transmission, and the fraction of the involved population.

A total of 13 calibrated parameters are considered. The parameter means, best-fits and uncertainties
are reconstructed through a Markov-Chain-Monte-Carlo method based on the Metroplolis-Hastings
algorithm, using the public MontePython code. Details on the model and parameter assumptions
(fixed, varying...) are available on demand.
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Figure 8: Schematic view of the ULB compartmental model. Each compartment is doubled in order
to allow the analysis of two populations with different contact behaviours.

20



